
50 The Delphi Magazine Issue 45

Getting The Message
by David Baer

Those using Delphi in its RAD
capacity may remain blissfully

unaware of the frenzy of messages
flying around in any Windows pro-
gram. But to attempt anything
sophisticated, one will soon
encounter the messaging aspects
of the Windows environment. Few
readers of this publication would
be surprised that in this area, as in
many others, Delphi and the VCL
up the ante to provide a value-
added set of capabilities that can
significantly amplify the efficiency
of our development efforts.

We’ll explore some of those
messaging augmentations in this
article, focussing in particular on
the VCL’s CN_... and CM_...
messages, which are an often
overlooked, but extremely valu-
able, resource for the component
developer. Following that discus-
sion, I’ll present a component that
can be used to eavesdrop on
Delphi internal message flows in a
far more intimate way than an
external spy tool like WinSight32.

A Better WAPI Than WAPI
Before we dive right in, I want to
clarify the scope of what we’ll
cover. This article will not attempt
an overview of the Delphi
messaging technology. For that
you should seek out a copy of
Delphi Component Design by
Danny Thorpe. Sadly, this book has
gone out of print, but I still
occasionally see a copy sitting on
bookstore shelves. The book’s
chapter on messaging in Delphi is
alone well worth the cover price.
Although the book’s basis is Delphi
2, nearly all the information in that
chapter is currently accurate and
pertinent. Delphi Component Design
is an invaluable work that should
be regarded as required reading
for any serious Delphi developer,
even one who has no component
writing responsibilities.

That out of the way, let’s begin.
In Windows, a message consists of
a 4-byte Cardinalmessage number,
followed by two 4-byte data fields,

the sub-allocations of which
depend upon the nature of the
message. In conventional Windows
programs, messages are sent to
message processing procedures
associated with a window’s
handle. As many Delphi compo-
nents are wrappers (of varying
‘thickness’) around stock
Windows controls, this message
flow must be preserved. But Delphi
and the VCL perform several
extremely clever manipulations
which allow the Windows
messaging to seamlessly integrate
with Delphi’s powerful object
oriented environment.

For starters, a Windows proce-
dure is just that: a procedure. But
Delphi components are classes,
and the procedures of classes are
methods. The calling protocols of
the two are different: methods
need a pointer to the object
instance passed in a call along with
any parameters. Delphi manages
to transform the former into the
latter by dynamically creating a
small piece of code which maps
incoming procedure calls to
method calls. The procedure to
which these outside calls are
mapped is the virtual method
WndProc, which is declared in
TControl. The great thing about our
window procedure being a method
is that we now have access to all
the per-instance data of our object.

Another great thing about this is
that Delphi lets us have it two
ways. We can get messages deliv-
ered using the API call SendMessage,
which is available to non-Delphi
participants. Or, we can use the
TControl method Perform, to poly-
morphically invoke WndProc
directly. Of course, in using Perform
and bypassing the API, Windows
(and any active message monitor-
ing programs) will have no knowl-
edge of this communication. Apart
from that, the following two lines of
code accomplish the same thing:

SendMessage(AControl.Handle,
A_MESSAGE_NBR, 0, 0);

AControl.Perform(
A_MESSAGE_NBR,0,0);

One final detail before we move on.
You may suspect that, somewhere
in all of this, a stock Windows con-
trol inside a class wrapper needs
to actually receive its messages.
Don’t worry, Delphi doesn’t let us
down. This happens in the
DefaultHandler method of
TWinControl, assuming processing
upstream has not preempted the
normal flow. The details are
beyond the scope of this discus-
sion, but, again, refer to Delphi
Component Design and, of course,
the VCL source, for further
edification.

Look Ma, No Handles!
If you’re paying very close atten-
tion, you may have noticed a seem-
ing contradiction in the above
explanation. On the one hand,
we’ve got WndProc and Perform
methods declared in TControl, but
window handles for controls don’t
appear in the class hierarchy until
TWinControl. What’s going on here?
Simply, the VCL is again demon-
strating its largesse. It can be quite
convenient at times for lowly
graphic controls like labels to be
plugged in to the messaging
network. But in the normal world
of Windows code, messaging
requires handles, and objects with
window handles consume valu-
able finite resources (even though
this is far less of a concern now
that we’ve gratefully arrived in the
bounteous land of Win32).

But having WndProc first appear
in the TControl class gives us this
extra capability without the extra
expense. Even without a window
handle, we can use Perform to send
messages to these handle-less con-
trols. Naturally, lacking a window
handle, the SendMessage API call is
not an option.

But wait, there’s more. It doesn’t
stop with TControl, because any
Delphi object can be the recipient
of a message courtesy of the Dis-
patch method of TObject. Dispatch
is the method which undertakes
the responsibility of finding
methods associated with message
numbers and invoking them (ie

May 1999 The Delphi Magazine 51

message handlers are those meth-
ods declared with the message key
word). If no handler exists, Dis-
patch just calls the TObject virtual
method DefaultHandler.

Dispatch is less judgmental
about the structure of the mes-
sages it fields. Unlike the other par-
ticipants mentioned so far,
Dispatchonly requires that the first
four bytes of the data be the mes-
sage number. It assumes that the
sender and recipient mutually
understand the structure of the
data involved. Dispatch is just the
mail man.

In most cases, messages to
Delphi controls will pass through
both WndProc and Dispatch, but this
is not always the case. A message
may be ‘eaten’ in WndProc and never
make it to the lower level Dispatch.
Alternatively, a message sent via
Dispatch will never be seen by
WndProc, as it enters the system at
this lower level. A grep of the VCL
will show you that although Dis-
patch calls do appear here and
there, its use is quite limited.

One place I’ve found Dispatch to
be especially convenient is in situa-
tions where a component needs to
send a notification to its Owner,
which could be either a form or a
data module (a TComponent deriva-
tive). As TComponent has no WndProc
(recall, that doesn’t appear until
TControl), Dispatch allows easily
coding the notification without
concern as to what sort of Owner is
in place.

Commonly Neglected
Next let’s move on to the subject of
the VCL’s value-added messages.
These come in two varieties: con-
trol messages (the CM_... group)
and control notifications (the
CN_... group). Listing 1 presents a
partial list of their message
number declarations (extracted
from controls.pas).

Both groups of messages can be
quite helpful in building compo-
nent functionality, but regrettably,
they are largely undocumented.
Ray Lischner did devote a number
of pages to the subject in his book
Secrets of Delphi 2, which has
unfortunately become nearly
impossible to find. Although

CM_BASE = $B000;
CM_ACTIVATE = CM_BASE + 0;
CM_DEACTIVATE = CM_BASE + 1;
CM_GOTFOCUS = CM_BASE + 2;
CM_LOSTFOCUS = CM_BASE + 3;
CM_CANCELMODE = CM_BASE + 4;
CM_DIALOGKEY = CM_BASE + 5;
CM_DIALOGCHAR = CM_BASE + 6;
CM_FOCUSCHANGED = CM_BASE + 7;
CM_PARENTFONTCHANGED = CM_BASE + 8;
CM_PARENTCOLORCHANGED = CM_BASE + 9;
...
CN_BASE = $BC00;
CN_CHARTOITEM = CN_BASE + WM_CHARTOITEM;
CN_COMMAND = CN_BASE + WM_COMMAND;
CN_COMPAREITEM = CN_BASE + WM_COMPAREITEM;
CN_CTLCOLORBTN = CN_BASE + WM_CTLCOLORBTN;
CN_CTLCOLORDLG = CN_BASE + WM_CTLCOLORDLG;
CN_CTLCOLOREDIT = CN_BASE + WM_CTLCOLOREDIT;
CN_CTLCOLORLISTBOX = CN_BASE + WM_CTLCOLORLISTBOX;
CN_CTLCOLORMSGBOX = CN_BASE + WM_CTLCOLORMSGBOX;
CN_CTLCOLORSCROLLBAR = CN_BASE + WM_CTLCOLORSCROLLBAR;
CN_CTLCOLORSTATIC = CN_BASE + WM_CTLCOLORSTATIC;

admirable in every other way,
Delphi Component Design barely
mentions these messages in pass-
ing. Danny suggests that a brief
examination of the VCL will allow
you to find out whatever you might
need to know about any particular
message (which, in his case, I’m
certain is perfectly true).

As for myself, I was well into my
quest to become an accomplished
component developer before I
began to comprehend what these
wonderful devices were and what
they could do for me. Let’s begin
with the component notification
messages.

The first big mystery one might
encounter in trying to understand
them is discovering where and
when they originate. A grep of the
VCL source reveals nothing.
Search for CN_KEYDOWN, for example,
and you’ll find about a half dozen
places where code is present to
handle this message, but nowhere
will you find a statement that does
a Perform, Dispatch, SendMessage or
anything else! However, the mys-
tery is immediately solved if you
look a bit more closely at the form
of the declarations in Listing 1.
Each of the CN_messages is defined
as standard Windows message
number (WM_xxxx) to which is
added the constant offset CN_BASE.

To find where the CN_ messages
originate, grep for CN_BASE and
you’ll be immediately rewarded.
Unfortunately, having that layer of
mystery removed, your reward will
be yet another layer of curious
goings on. For example, quite a few
of the CN_ messages are sent in
response to a WM_ message by way

of the function DoControlMsg in
controls.pas. DoControlMsg is
called from quite a few places, and
the motivation behind all of this is
not immediately apparent.

But don’t give up just yet. The
one thing that the component noti-
fication messages seem to have in
common is that they offer a pre-
viewing capability. This preview-
ing not only gives the potential
recipient control a ‘heads up’, the
control then also has the opportu-
nity to alter the message data
before the message continues
along its way.

Let’s consider one example. Say
your edit component lives on a
form which has a shortcut defined
for some menu item, but the menu
action is not one your component
is always prepared to support. Fur-
thermore, when a key combination
is defined as a shortcut, your edit
component will never see the
WM_xxxx key events in the first
place. It will, however, see the pre-
view messages associated with
key strokes (CN_KEYDOWN, CN_CHAR
and CN_KEYUP). Forewarned is
forearmed.

Completely Mysterious
Although it can occasionally be
useful to tap into control notifica-
tions, it’s the control messages
(the CM_ series) that are the truly
useful lot. Their use is widespread
and their purposes are quite
diverse. But there are two things
for which we can be grateful: their
names are self-explanatory for the
most part, and we can find exactly

➤ Listing 1

52 The Delphi Magazine Issue 45

where and when they originate
with a bit of grepping.

As examples, let’s start with a
truly helpful pair of them:
CM_MOUSEENTER and CM_MOUSELEAVE.
Suppose you had a label compo-
nent containing underlined text
that you wanted to have behave
like a browser link. When the
mouse travels over it, you'd like it
to change color. With these two
handy messages, the solution
could hardly be any easier.

Next let’s look at a somewhat
more obscure situation by examin-
ing CM_FONTCHANGED. Consider what
goes on to produce and send this
message. There’s two dozen or so
instances of message handlers for
this message throughout the VCL,
but all the handlers are declared in
classes having TControl as an
ancestor, and TControl is where the
internal helper TFont object is
introduced.

TFont has an inherited event
OnChange, which it triggers when
there’s a change to one of its own
property settings. TControl hooks

up its method FontChanged to be the
event handler (it’s allowed to do so
since the event is strictly internal
and not surfaced for use by the
component user). In FontChanged,
several state management chores
are completed and a
CM_FONTCHANGED is sent to Self.
Clever, eh?

But let’s play devil’s advocate for
a moment and consider whether
this solution isn’t a rather baroque
one. After all, why not just declare
a virtual FontChanged method (or a
dynamic one if you’re worried
about VMT size) and be done with
it? Certainly a direct method invo-
cation would be more efficient
than invoking the VCL message
machinery.

There are several possible argu-
ments in favor of a message
approach, however. For one thing,
in this situation at least, a message
simply feels right. One might con-
veniently group multiple message
constants in a case list inside a
WndProc case statement for shared
treatment, thus eliminating the
need for multiple message handler
methods. Also, messages are a

very clean mechanism with
respect to loose coupling. A mes-
sage can always be sent without
concern that the recipient cares
anything about it. If it doesn’t, the
message is ignored and all we’ve
done is to squander a couple
hundred nanoseconds. But there’s
one additional way in which the
message solution is concise and
elegant.

In a number of CM message han-
dlers, the message, once received,
is immediately passed on to the
parent, potentially travelling all
the way up the parent chain. In
other cases, the message is broad-
cast to child controls. The child
control recipient may in turn
broadcast it to its child controls.
Once again, the loosely coupled
nature of the message approach
allows such code to be succinct
and comprehensible.

By now, you may be convinced
that Delphi’s value-added mes-
sages are indeed something upon
which you can and should capital-
ize in your component develop-
ment efforts. So, what’s the next
step? You could, perhaps, hole up
in a cave with the VCL source for
several months and attempt to
understand all their intimate
details. But wouldn’t it be easier if
you could just check out the mes-
sage flows in your component’s
proposed base class to see what’s
there to utilize? That’s where
TMessageSpy may prove useful.

TSmiley’s People
I briefly considered naming this
component after John Le Carré’s
signature character, but then
remembered that the name had
already been taken. Oh well. In
what follows, I’ll describe the func-
tions provided by TMessageSpy, and
we’ll take a look at the several tech-
niques it uses to accomplish its
covert operations. All the code is
on the disk accompanying this
month’s issue, along with a
readme file containing installation
instructions and any last minute
errata. One caution: TMessageSpy
will not work with any Delphi
release prior to Delphi 4.

Figure 1 shows the two forms
supplied. The component is used

➤ Figure 1

54 The Delphi Magazine Issue 45

by placing it on the form containing
the controls you’d like to monitor.
It appears as a button which, when
clicked, shows the message dis-
play form. From that form, you
need to click the Configure button
and select the control you’re inter-
ested in. TMessageSpy will allow
only one control at a time to be
spied upon, and only one message
spy may be active at one time. We’ll
see shortly how this limitation
allows us to avoid a serious
identity crisis.

In addition to selecting the con-
trol to monitor, the configuration
form allows several options to be
selected. The message types can
be selected: Windows Messages,
CN Messages and/or CM Messages.
Actually, these designations
denote the message number
ranges $0000-$AFFF, $BC00-$FFFF
and $B000-$BBFF respectively.

Two filtering mechanisms are
provided. We can suppress the
display for successive messages
with the same number, and/or we
can suppress four messages which
will arrive with great frequency:
WM_NCHITTEST, WM_SETCURSOR, WM_
MOUSEMOVE and CM_HITTEST. Finally,
we can choose to look at message
arrivals into WndProc, Dispatch or
both. When we select both, the
message display prefixes each
message line with a W or D to denote
where the message was inter-
cepted.

Finally, an event, OnMessage
Receipt, is supplied that may be
used to impose custom filtering
and to add lines to the message

display window. The parameter
list contains a var Boolean item
which specifies whether the mes-
sage is to be filtered. Another
parameter, Lines, provides a refer-
ence to the Lines property of the
message window: it can be used to
add your own information to the
output display.

I won’t undertake a soup to nuts
explanation [And I thought us Brits
had some quaint phrases... Ed] of
the code associated with this com-
ponent. The two forms are sup-
ported by fairly simple code. A
third unit, MessageDict, is used to
isolate the message numbers and
associated names, and to provide
lookup services. The interesting
activities take place in the
MessageSpy unit, which defines two
classes. TMessageSpy is the compo-
nent itself, and THooker is the actual
spy engine.

THooker, the declaration for
which is shown in Listing 2, is a
singleton. As mentioned earlier, we
will allow only one spy to be active
at any time. THooker accomplishes
its snooping by using one officially
sanctioned hooking mechanism
and several sneaky hacks. Given
the nature of these activities, we’ll
try to be extra careful nothing
unexpected happens by building in
several safety features. The code
for TMessageSpy was developed on
my home Windows 95 system.
Need I say more?

You might think that we’d need
to resort to assembler code to
accomplish these sort of activities,
but that’s not a very desirable
solution. For one thing, we’d be
discouraged by long-standing

PPointer = ^Pointer;
EHookerError = class(Exception);
TDispatchMethod = procedure(var Message) of Object;
TFreeInstanceMethod = procedure of Object;
TWndProcMethod = procedure(var Message: TMessage) of Object;
TDispatchMessageEvent = procedure(const Message) of Object;
TWndProcMessageEvent =
procedure(const Message: TMessage) of Object;

THookeeDestructing = TNotifyEvent;
THooker = class(TControl)
private
Hookee: TControl;
OnDispatchMessage: TDispatchMessageEvent;
OnWndProcMessage: TWndProcMessageEvent;
OnHookeeDestructing: TNotifyEvent;
ClientList: TList;
TrueDispatchMethod: TDispatchMethod;
TrueFreeInstanceMethod: TFreeInstanceMethod;
TrueWndProcMethod: TWndProcMethod;
procedure DispatchHook(var Message);
function DispatchVMTAddr(AControl: TControl): Pointer;
procedure FreeInstanceHook;
function FreeInstanceVMTAddr(AControl: TControl):
Pointer;

procedure HookDispatchMethod(AControl: TControl);
procedure HookFreeInstanceMethod(AControl: TControl);
procedure HookWndProcMethod(AControl: TControl);
procedure SetHookee(AControl: TControl);
procedure UnhookDispatchMethod;
procedure UnhookFreeInstanceMethod;
procedure UnhookWndProcMethod;
procedure WndProcHook(var Message: TMessage);
function WndProcIsHooked(AControl: TControl): Boolean;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
class procedure AttachSpy(MS: TMessageSpy);
procedure DetachSpy(MS: TMessageSpy);
procedure HookControl(MS: TMessageSpy; AControl:
TControl;

ParamOnWndProcMessage: TWndProcMessageEvent;
ParamOnDispatchMessage: TDispatchMessageEvent;
ParamOnHookeeDestructing: TNotifyEvent);
procedure UnhookControl;
procedure ViewerShowing(Showing: Boolean);

end;

➤ Listing 2

Borland tradition against docu-
menting this most inscrutable of
code. But, as you’ll see, we can
avoid assembler with a little cre-
ative use of the hacker’s best
friend: the pointer.

Hooking WndProc is fairly easy to
do. Delphi 3 introduced a little-
heralded enhancement: the
WindowProc property of TControl.
By assigning a method of THooker
to this property, the hook is easily
set in place, as can be seen in List-
ing 3. Method HookWndProc redi-
rects the hooked control’s WndProc
to THooker’s WndProcHook method.
Then in WndProcHook, we pass the
message through to the original
WndProc, after we’ve given the
active TMessageSpy the opportunity
to examine and possibly display it.

Listing 3 code also illustrates the
first safety feature we’ll put in
place. Hooks can be dicey where
multiple hooks are present. If their
settings and subsequent re-
settings happen in an interleaved
fashion, all manner of nastiness
can result. Therefore, THooker will
simply decline to offer its services
if it discovers that the control
already has a hook in place.

Briefly, this check works by
finding the control’s WndProc, and
comparing this address with that
in WindowProc. THooker is derived
from TControl solely for this pur-
pose. As a TControl, it has its own
WndProc, which it can locate in its
class’s VMT. Since WndProc will be
at the same VMT offset in all
TControl-derived VMTs, THooker
knows where to look in the hooked
control class’s VMT to perform its
check. In approaching the problem

May 1999 The Delphi Magazine 55

procedure THooker.HookWndProcMethod(AControl: TControl);
begin
if WndProcIsHooked(AControl) then
raise EHookerError.Create('Cannot attach to control; ' +
'the control currently has a WindowProc hook active');

TrueWndProcMethod := AControl.WindowProc;
AControl.WindowProc := WndProcHook;

end;
procedure THooker.WndProcHook(var Message: TMessage);
begin
// fire the wndproc message event
if Assigned(Hooker.OnWndProcMessage) then
Hooker.OnWndProcMessage(Message);

Hooker.TrueWndProcMethod(Message);
end;
function THooker.WndProcIsHooked(AControl: TControl):
Boolean;

var
P: PPointer;
WPPosition: Integer;
WPMethod: TWndProcMethod;

begin
// get address of our class's WndProc method by assigning

// it to the event variable; the first 4 bytes of this is
// the address we need to find in our class's VMT
WPMethod := WndProc;
// get the address of our class's VMT
P := Pointer(Pointer(Self)^);
// interate through the VMT until we find the entry that
// equals that of our WndProc
while Pointer(TMethod(WPMethod).Code) <> Pointer(P^) do
Inc(P);

// the offset result is the address at which our WndProc
// was found minus the start of our VMT
WPPosition := (PChar(P) - PChar(Pointer(Self)^)) div 4;
P := Pointer(Pointer(AControl)^);
// add offset of WndProc to the pointer; the offset of
// WndProc will be the same for all TControl derived
// classes
Inc(P, WPPosition);
// finally, check to see if AControl's WindowProc property
// does not equal that WndProc address in AControl's VMT;
// if it does not then the control has a WndProc hook
// active
Result := (TMethod(AControl.WindowProc).Code <> P^);

end;

➤ Listing 3

in this way, we can be reasonably
confident that the code will be
compatible with future Delphi
releases. The code that does this is
in method WndProcIsHooked. It is
documented in detail, and will
hopefully not be too mysterious.

Can You See The Real Me?
At this point, let’s consider what is
going on when WndProcHook is
called. The caller is invoking a
method of the hooked control, and
in doing so the compiler will gener-
ate code to have that object’s
instance pointer passed in as Self.
So we may be inside a method of
THooker, but at this point we have
no way to access our THooker’s
instance data, because Self ain’t
us! This is where the singleton
implementation saves the day. As a
singleton, we can declare a global
instance reference in the unit and
use that to access the instance
data.

Setting a hook for Dispatch is a
bit trickier than setting one for
WndProc. In Delphi 4 we see that Dis-
patch has, for the first time, been
declared as virtual. Why this was
done is a mystery, as Dispatch is
not overridden anywhere in the
distributed VCL source code. But
no matter, we’ll use the virtual
declaration to our advantage.
Being virtual, Dispatch appears in
the VMT of all classes. We can hack
the VMT to introduce the hook. If
this approach sounds familiar, you
may have seen the technique
explained by Cyril Jandia in his
article in Issue 24 (August 1997).

Unlike the WndProc hook
explained earlier, which hooked a
single instance of a control,
introducing redirection into the
VMT hooks all instances of a class.
So our approach here must be a
little different.

Listing 4 shows the code associ-
ated with this activity. The
HookDispatchmethod sets the hook
using the DispatchVMTAddr method
to find the VMT location into which
the redirection is placed. The code
uses the constant offset
vmtDispatch, which is defined in
classes.pas, to ensure compatibil-
ity with future Delphi releases.

Once the hook is set, all Dispatch
invocations on instances of the
hooked control’s class will come
through THooker’s DispatchHook
method. First of all, we need to
check which control the message

procedure THooker.DispatchHook(var Message);
begin
// if Self is the Hookee then fire the dispatch message event
if (Hooker.Hookee = Self) and Assigned(Hooker.OnDispatchMessage) then
Hooker.OnDispatchMessage(Message);

// set the true dispatch method's object reference to the "self"
// passed in to this method
TMethod(Hooker.TrueDispatchMethod).Data := Self;
Hooker.TrueDispatchMethod(Message);

end;
function THooker.DispatchVMTAddr(AControl: TControl): Pointer;
begin
// get address of AControl's class's MVT
Result := Pointer(Pointer(AControl)^);
// subract offset of Dispatch to the pointer
Inc(PChar(Result), vmtDispatch);

end;
procedure THooker.HookDispatchMethod(AControl: TControl);
var
P: Pointer;
M: TMethod;
Cnt: Cardinal;

begin
// set P to the control's class's VMT address of Dispatch
P := DispatchVMTAddr(AControl);
// save it in TrueDispatchMethod
TMethod(TrueDispatchMethod).Code := Pointer(P^);
// set the VMT addr of the control's class's MVT Dispatch address
// to that of our own Dispatch
TDispatchMethod(M) := DispatchHook;
WriteProcessMemory(GetCurrentProcess, P, @M.Code, SizeOf(Pointer), Cnt);

end;

➤ Listing 4

belongs to before allowing
TMessageSpy to work with it. We
only want to get TMessageSpy
involved if the message belongs to
the hooked control. We also need
to play more identity games.

When the Dispatchhook was set,
the true Dispatch method address
was saved in the method variable
TrueDispatchMethod, which is of
type TDispatchMethod. Method vari-
ables contain two 32-bit words, the
first containing the address of the
procedure and the second
containing the instance address.
Although we saved the original
code address in TrueDispatch
Method, we need to set the instance
address each time we pass an invo-
cation through. Once again,
documentation in the code will

56 The Delphi Magazine Issue 45

hopefully allow the interested
reader to follow along.

One final thing to mention is the
other safety measure provided in
THooker. A hook into the hooked
object’s class’s FreeInstance
method is inserted. If the object is
being destroyed, we need to
remove ourselves from the picture
while we still can. The FreeInstance
hook technique is the same as used
for Dispatch.

In From The Cold
Well, that’s about it. I hope some of
you will find TMessageSpy to be a
useful research tool.

I also hope you’ll forgive me for
the hacks. After all, they were used
for good, not evil, and I did try to
provide some extra protections to
compensate for them. Because, if
I’ve learned one thing in my many
years of programming, it’s this: if
one must engage in hacks, one

should always try to practise safe
hacks.

David Baer is Chief Software
Architect at Spear Technologies in
San Francisco. If you send an email
to dbaer@speartechnologies.com
he will attempt to answer it
with... err... dispatch.

	A Better WAPI Than WAPI
	Look Ma, No Handles!
	Commonly Neglected
	Completely Mysterious
	TSmiley’s People
	Can You See The Real Me?
	In From The Cold

